Micro- and nanopatterned copper structures using directed self-assembly on templates fabricated from phase-separated mixed Langmuir-Blodgett films
We report a versatile method to confine metal thin films in micro- and nanopatterns using directed self-assembly on the templates fabricated from phase-separated mixed Langmuir-Blodgett (LB) films. The pattern of the mixed LB films can be tuned by adjusting intermolecular interaction between the fil...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 16 vom: 19. Aug., Seite 8735-41 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We report a versatile method to confine metal thin films in micro- and nanopatterns using directed self-assembly on the templates fabricated from phase-separated mixed Langmuir-Blodgett (LB) films. The pattern of the mixed LB films can be tuned by adjusting intermolecular interaction between the film-forming molecules in the LB films and by varying the fabrication conditions of the films such as the mixing ratio, subphase temperature, and surface pressure. We use the patterned LB films for templates to confine metal in patterned regions, taking advantage of the difference between the surface free energy of the patterned regions and that of the self-assembled monolayer of the silane coupling agent. Au nanoparticles are confined onto the patterned films as a catalyst for the succeeding Cu electroless deposition. The atomic force microscopic images, Auger electron spectra, and scanning Auger electron maps of a Cu-deposited film show that Cu is selectively deposited on the patterns of phase separation of the original mixed LB films |
---|---|
Beschreibung: | Date Completed 17.09.2008 Date Revised 13.08.2008 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la800805r |