|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM18099641X |
003 |
DE-627 |
005 |
20250209151317.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2008.02558.x
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0603.xml
|
035 |
|
|
|a (DE-627)NLM18099641X
|
035 |
|
|
|a (NLM)18637066
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Mäkelä, Annikki
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Optimal co-allocation of carbon and nitrogen in a forest stand at steady state
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.11.2008
|
500 |
|
|
|a Date Revised 16.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Nitrogen (N) is essential for plant production, but N uptake imposes carbon (C) costs through maintenance respiration and fine-root construction, suggesting that an optimal C:N balance can be found. Previous studies have elaborated this optimum under exponential growth; work on closed canopies has focused on foliage only. Here, the optimal co-allocation of C and N to foliage, fine roots and live wood is examined in a closed forest stand. Optimal co-allocation maximizes net primary productivity (NPP) as constrained by stand-level C and N balances and the pipe model. Photosynthesis and maintenance respiration increase with foliar nitrogen concentration ([N]), and stand-level photosynthesis and N uptake saturate at high foliage and fine-root density. Optimal NPP increases almost linearly from low to moderate N availability, saturating at high N. Where N availability is very low or very high, the system resembles a functional balance with a steady foliage [N]; in between, [N] increases with N availability. Carbon allocation to fine roots decreases, allocation to wood increases, and allocation to foliage remains stable with increasing N availability. The predicted relationships between biomass density and foliage [N] are in reasonable agreement with data from coniferous stands across Finland. All predictions agree with our qualitative understanding of N effects on growth
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Valentine, Harry T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Helmisaari, Heljä-Sisko
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1990
|g 180(2008), 1 vom: 01., Seite 114-123
|w (DE-627)NLM09818248X
|x 0028-646X
|7 nnns
|
773 |
1 |
8 |
|g volume:180
|g year:2008
|g number:1
|g day:01
|g pages:114-123
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2008.02558.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 180
|j 2008
|e 1
|b 01
|h 114-123
|