Statistical properties of bit-plane probability model and its application in supervised texture classification

The modeling of wavelet subband histograms via the product Bernoulli distributions (PBD) has received a lot of interest and the PBD model has been applied successfully in texture image retrieval. In order to fully understand the usefulness and effectiveness of the PBD model and its associated signat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 8 vom: 01. Aug., Seite 1399-405
1. Verfasser: Choy, S K (VerfasserIn)
Weitere Verfasser: Tong, C S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM180952129
003 DE-627
005 20231223160355.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.925370  |2 doi 
028 5 2 |a pubmed24n0603.xml 
035 |a (DE-627)NLM180952129 
035 |a (NLM)18632348 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Choy, S K  |e verfasserin  |4 aut 
245 1 0 |a Statistical properties of bit-plane probability model and its application in supervised texture classification 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2008 
500 |a Date Revised 17.07.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The modeling of wavelet subband histograms via the product Bernoulli distributions (PBD) has received a lot of interest and the PBD model has been applied successfully in texture image retrieval. In order to fully understand the usefulness and effectiveness of the PBD model and its associated signature, namely, the bit-plane probability (BP) signature on image processing applications, we discuss and investigate some of their statistical properties. These properties would help to clarify the sufficiency of the BP signature to characterize wavelet subbands, which, in turn, justifies its use in real time applications. We apply the BP signature on supervised texture classification problem and experimental results suggest that the weighted L(1)-norm (rather than the standard L (1)-norm) should be used for the BP signature. Comparative classification experiments show that our method outperforms the current state-of-the-art Generalized Gaussian Density approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tong, C S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 8 vom: 01. Aug., Seite 1399-405  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:8  |g day:01  |g month:08  |g pages:1399-405 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.925370  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 8  |b 01  |c 08  |h 1399-405