Noise and signal estimation in magnitude MRI and Rician distributed images : a LMMSE approach

A new method for noise filtering in images that follow a Rician model-with particular attention to magnetic resonance imaging-is proposed. To that end, we have derived a (novel) closed-form solution of the linear minimum mean square error (LMMSE) estimator for this distribution. Additionally, a set...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 8 vom: 30. Aug., Seite 1383-98
Auteur principal: Aja-Fernandez, Santiago (Auteur)
Autres auteurs: Alberola-Lopez, Carlos, Westin, Carl-Fredrik
Format: Article en ligne
Langue:English
Publié: 2008
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM180952110
003 DE-627
005 20250209150737.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.925382  |2 doi 
028 5 2 |a pubmed25n0603.xml 
035 |a (DE-627)NLM180952110 
035 |a (NLM)18632347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Aja-Fernandez, Santiago  |e verfasserin  |4 aut 
245 1 0 |a Noise and signal estimation in magnitude MRI and Rician distributed images  |b a LMMSE approach 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2008 
500 |a Date Revised 17.07.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A new method for noise filtering in images that follow a Rician model-with particular attention to magnetic resonance imaging-is proposed. To that end, we have derived a (novel) closed-form solution of the linear minimum mean square error (LMMSE) estimator for this distribution. Additionally, a set of methods that automatically estimate the noise power are developed. These methods use information of the sample distribution of local statistics of the image, such as the local variance, the local mean, and the local mean square value. Accordingly, the dynamic estimation of noise leads to a recursive version of the LMMSE, which shows a good performance in both noise cleaning and feature preservation. This paper also includes the derivation of the probability density function of several local sample statistics for the Rayleigh and Rician model, upon which the estimators are built 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Alberola-Lopez, Carlos  |e verfasserin  |4 aut 
700 1 |a Westin, Carl-Fredrik  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 8 vom: 30. Aug., Seite 1383-98  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:17  |g year:2008  |g number:8  |g day:30  |g month:08  |g pages:1383-98 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.925382  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 8  |b 30  |c 08  |h 1383-98