Optimal denoising in redundant representations

Image denoising methods are often designed to minimize mean-squared error (MSE) within the subbands of a multiscale decomposition. However, most high-quality denoising results have been obtained with overcomplete representations, for which minimization of MSE in the subband domain does not guarantee...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 8 vom: 30. Aug., Seite 1342-52
1. Verfasser: Raphan, Martin (VerfasserIn)
Weitere Verfasser: Simoncelli, Eero P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM180952080
003 DE-627
005 20250209150737.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.925392  |2 doi 
028 5 2 |a pubmed25n0603.xml 
035 |a (DE-627)NLM180952080 
035 |a (NLM)18632344 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Raphan, Martin  |e verfasserin  |4 aut 
245 1 0 |a Optimal denoising in redundant representations 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2008 
500 |a Date Revised 21.03.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Image denoising methods are often designed to minimize mean-squared error (MSE) within the subbands of a multiscale decomposition. However, most high-quality denoising results have been obtained with overcomplete representations, for which minimization of MSE in the subband domain does not guarantee optimal MSE performance in the image domain. We prove that, despite this suboptimality, the expected image-domain MSE resulting from applying estimators to subbands that are made redundant through spatial replication of basis functions (e.g., cycle spinning) is always less than or equal to that resulting from applying the same estimators to the original nonredundant representation. In addition, we show that it is possible to further exploit overcompleteness by jointly optimizing the subband estimators for image-domain MSE. We develop an extended version of Stein's unbiased risk estimate (SURE) that allows us to perform this optimization adaptively, for each observed noisy image. We demonstrate this methodology using a new class of estimator formed from linear combinations of localized "bump" functions that are applied either pointwise or on local neighborhoods of subband coefficients. We show through simulations that the performance of these estimators applied to overcomplete subbands and optimized for image-domain MSE is substantially better than that obtained when they are optimized within each subband. This performance is, in turn, substantially better than that obtained when they are optimized for use on a nonredundant representation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Simoncelli, Eero P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 8 vom: 30. Aug., Seite 1342-52  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:8  |g day:30  |g month:08  |g pages:1342-52 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.925392  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 8  |b 30  |c 08  |h 1342-52