Nonlinear regularized reaction-diffusion filters for denoising of images with textures
Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 8 vom: 30. Aug., Seite 1283-94 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Denoising is always a challenging problem in natural imaging and geophysical data processing. In this paper, we consider the denoising of texture images using a nonlinear reaction-diffusion equation and directional wavelet frames. In our model, a curvelet shrinkage is used for regularization of the diffusion process to preserve important features in the diffusion smoothing and a wave atom shrinkage is used as the reaction in order to preserve and enhance interesting oriented textures. We derive a digital reaction-diffusion filter that lives on graphs and show convergence of the corresponding iteration process. Experimental results and comparisons show very good performance of the proposed model for texture-preserving denoising |
---|---|
Beschreibung: | Date Completed 16.09.2008 Date Revised 17.07.2008 published: Print Citation Status MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2008.925305 |