An efficient algorithm for energy gradients and orbital optimization in valence bond theory

An efficient algorithm for energy gradients in valence bond theory with nonorthogonal orbitals is presented. A general Hartree-Fock-like expression for the Hamiltonian matrix element between valence bond (VB) determinants is derived by introducing a transition density matrix. Analytical expressions...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 3 vom: 15. Feb., Seite 399-406
1. Verfasser: Song, Lingchun (VerfasserIn)
Weitere Verfasser: Song, Jinshuai, Mo, Yirong, Wu, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM180929062
003 DE-627
005 20231223160332.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21065  |2 doi 
028 5 2 |a pubmed24n0603.xml 
035 |a (DE-627)NLM180929062 
035 |a (NLM)18629879 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Lingchun  |e verfasserin  |4 aut 
245 1 3 |a An efficient algorithm for energy gradients and orbital optimization in valence bond theory 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.02.2009 
500 |a Date Revised 28.03.2012 
500 |a published: Print 
500 |a CommentIn: J Comput Chem. 2012 Mar 30;33(8):911-3; discussion 914-5. - PMID 22278948 
500 |a Citation Status MEDLINE 
520 |a An efficient algorithm for energy gradients in valence bond theory with nonorthogonal orbitals is presented. A general Hartree-Fock-like expression for the Hamiltonian matrix element between valence bond (VB) determinants is derived by introducing a transition density matrix. Analytical expressions for the energy gradients with respect to the orbital coefficients are obtained explicitly, whose scaling for computational cost is m(4), where m is the number of basis functions, and is thus approximately the same as in HF method. Compared with other existing approaches, the present algorithm has lower scaling, and thus is much more efficient. Furthermore, the expression for the energy gradient with respect to the nuclear coordinates is also presented, and it provides an effective algorithm for the geometry optimization and the evaluation of various molecular properties in VB theory. Test applications show that our new algorithm runs faster than other methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Song, Jinshuai  |e verfasserin  |4 aut 
700 1 |a Mo, Yirong  |e verfasserin  |4 aut 
700 1 |a Wu, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 3 vom: 15. Feb., Seite 399-406  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:3  |g day:15  |g month:02  |g pages:399-406 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21065  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 3  |b 15  |c 02  |h 399-406