Randomized clustering forests for image classification

Some of the most effective recent methods for content-based image classification work by quantizing image descriptors, and accumulating histograms of the resulting visual word codes. Large numbers of descriptors and large codebooks are required for good results and this becomes slow using k-means. W...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 9 vom: 15. Sept., Seite 1632-46
1. Verfasser: Moosmann, Frank (VerfasserIn)
Weitere Verfasser: Nowak, Eric, Jurie, Frederic
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM18081463X
003 DE-627
005 20231223160133.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70822  |2 doi 
028 5 2 |a pubmed24n0603.xml 
035 |a (DE-627)NLM18081463X 
035 |a (NLM)18617720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moosmann, Frank  |e verfasserin  |4 aut 
245 1 0 |a Randomized clustering forests for image classification 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2008 
500 |a Date Revised 11.07.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Some of the most effective recent methods for content-based image classification work by quantizing image descriptors, and accumulating histograms of the resulting visual word codes. Large numbers of descriptors and large codebooks are required for good results and this becomes slow using k-means. We introduce Extremely Randomized Clustering Forests ensembles of randomly created clustering trees and show that they provide more accurate results, much faster training and testing, and good resistance to background clutter. Second, an efficient image classification method is proposed. It combines ERC-Forests and saliency maps very closely with the extraction of image information. For a given image, a classifier builds a saliency map online and uses it to classify the image. We show in several state-of-the-art image classification tasks that this method can speed up the classification process enormously. Finally, we show that the proposed ERC-Forests can also be used very successfully for learning distance between images. The distance computation algorithm consists of learning the characteristic differences between local descriptors sampled from pairs of same or different objects. These differences are vector quantized by ERC-Forests and the similarity measure is computed from this quantization. The similarity measure has been evaluated on four very different datasets and always outperforms the state-of-the-art competitive approaches 
650 4 |a Journal Article 
700 1 |a Nowak, Eric  |e verfasserin  |4 aut 
700 1 |a Jurie, Frederic  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 9 vom: 15. Sept., Seite 1632-46  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:9  |g day:15  |g month:09  |g pages:1632-46 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70822  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 9  |b 15  |c 09  |h 1632-46