Multiple-view geometry under the Linfinity-norm

This paper presents a new framework for solving geometric structure and motion problems based on Linfinity-norm. Instead of using the common sum-of-squares cost-function, that is, the L2-norm, the model-fitting errors are measured using the L-norm. Unlike traditional methods based on L2, our framewo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 9 vom: 15. Sept., Seite 1603-17
1. Verfasser: Kahl, Fredrik (VerfasserIn)
Weitere Verfasser: Hartley, Richard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM180814613
003 DE-627
005 20231223160133.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70824  |2 doi 
028 5 2 |a pubmed24n0603.xml 
035 |a (DE-627)NLM180814613 
035 |a (NLM)18617718 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kahl, Fredrik  |e verfasserin  |4 aut 
245 1 0 |a Multiple-view geometry under the Linfinity-norm 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2008 
500 |a Date Revised 11.07.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a new framework for solving geometric structure and motion problems based on Linfinity-norm. Instead of using the common sum-of-squares cost-function, that is, the L2-norm, the model-fitting errors are measured using the L-norm. Unlike traditional methods based on L2, our framework allows for efficient computation of global estimates. We show that a variety of structure and motion problems, for example, triangulation, camera resectioning and homography estimation can be recast as quasi-convex optimization problems within this framework. These problems can be efficiently solved using Second-Order Cone Programming (SOCP) which is a standard technique in convex optimization. The methods have been implemented in Matlab and the resulting toolbox has been made publicly available. The algorithms have been validated on real data in different settings on problems with small and large dimensions and with excellent performance 
650 4 |a Journal Article 
700 1 |a Hartley, Richard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 9 vom: 15. Sept., Seite 1603-17  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:9  |g day:15  |g month:09  |g pages:1603-17 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70824  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 9  |b 15  |c 09  |h 1603-17