Measuring the time-dependent functional activity of adsorbed fibrinogen by atomic force microscopy

In this work, we measured time-dependent functional changes in adsorbed fibrinogen by measuring antigen-antibody debonding forces with atomic force microscopy (AFM). AFM probes were functionalized with monoclonal antibodies recognizing fibrinogen gamma 392-411, which includes the platelet binding do...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 16 vom: 19. Aug., Seite 8801-6
1. Verfasser: Soman, Pranav (VerfasserIn)
Weitere Verfasser: Rice, Zachary, Siedlecki, Christopher A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S. Fibrinogen 9001-32-5 L-Lactate Dehydrogenase EC 1.1.1.27
Beschreibung
Zusammenfassung:In this work, we measured time-dependent functional changes in adsorbed fibrinogen by measuring antigen-antibody debonding forces with atomic force microscopy (AFM). AFM probes were functionalized with monoclonal antibodies recognizing fibrinogen gamma 392-411, which includes the platelet binding dodecapeptide region. These probes were used to collect force measurements between the antibody and fibrinogen on mica substrates and the probability of antigen recognition was calculated. Statistical analysis showed that the probability of antibody-antigen recognition peaked at approximately 45 min postadsorption and decreased with increasing residence time. Macroscale platelet adhesion measurements on these mica substrates were determined to be greatest at fibrinogen residence times of approximately 45 min, which correlated well with the functional activity of adsorbed fibrinogen as measured by the modified AFM probes. These results demonstrate the utility of this approach for measuring protein function at or near the molecular scale and offers new opportunities for improved insights into the molecular basis for the biological response to biomaterials
Beschreibung:Date Completed 17.09.2008
Date Revised 08.05.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la801227e