Optimal surface parameterization using inverse curvature map

Mesh parameterization is a fundamental technique in computer graphics. Our paper focuses on solving the problem of finding the best discrete conformal mapping that also minimizes area distortion. Firstly, we deduce an exact analytical differential formula to represent area distortion by curvature ch...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 14(2008), 5 vom: 01. Sept., Seite 1054-66
1. Verfasser: Yang, Yong-Liang (VerfasserIn)
Weitere Verfasser: Kim, Junho, Luo, Feng, Hu, Shi-Min, Gu, Xianfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM180647512
003 DE-627
005 20231223155836.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2008.54  |2 doi 
028 5 2 |a pubmed24n0602.xml 
035 |a (DE-627)NLM180647512 
035 |a (NLM)18599917 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Yong-Liang  |e verfasserin  |4 aut 
245 1 0 |a Optimal surface parameterization using inverse curvature map 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.09.2008 
500 |a Date Revised 07.07.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Mesh parameterization is a fundamental technique in computer graphics. Our paper focuses on solving the problem of finding the best discrete conformal mapping that also minimizes area distortion. Firstly, we deduce an exact analytical differential formula to represent area distortion by curvature change in the discrete conformal mapping, giving a dynamic Poisson equation. Our result shows the curvature map is invertible. Furthermore, we give the explicit Jacobi matrix of the inverse curvature map. Secondly, we formulate the task of computing conformal parameterizations with least area distortions as a constrained nonlinear optimization problem in curvature space. We deduce explicit conditions for the optima. Thirdly, we give an energy form to measure the area distortions, and show it has a unique global minimum. We use this to design an efficient algorithm, called free boundary curvature diffusion, which is guaranteed to converge to the global minimum. This result proves the common belief that optimal parameterization with least area distortion has a unique solution and can be achieved by free boundary conformal mapping. Major theoretical results and practical algorithms are presented for optimal parameterization based on the inverse curvature map. Comparisons are conducted with existing methods and using different energies. Novel parameterization applications are also introduced 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Kim, Junho  |e verfasserin  |4 aut 
700 1 |a Luo, Feng  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
700 1 |a Gu, Xianfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 14(2008), 5 vom: 01. Sept., Seite 1054-66  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:14  |g year:2008  |g number:5  |g day:01  |g month:09  |g pages:1054-66 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2008.54  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2008  |e 5  |b 01  |c 09  |h 1054-66