Structure of the Langmuir monolayers with fluorinated ethyl amide and ethyl ester polar heads creating dipole potentials of opposite sign

This study experimentally checks our previous hypothesis (Petrov, J. G.; Polymeropoulos, E. E.; Moehwald, H. Langmuir 2007, 23, 2623) that different conformations of the fluorinated heads of RCONHCH(2)CF(3) and RCOOCH(2)CF(3) monolayers cause the opposite signs and the striking difference of 1.480 V...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 15 vom: 05. Aug., Seite 8001-7
1. Verfasser: Andreeva, Tonya D (VerfasserIn)
Weitere Verfasser: Petrov, Jordan G, Brezesinski, Gerald, Moehwald, Helmuth
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amides Esters Fluorine Compounds
Beschreibung
Zusammenfassung:This study experimentally checks our previous hypothesis (Petrov, J. G.; Polymeropoulos, E. E.; Moehwald, H. Langmuir 2007, 23, 2623) that different conformations of the fluorinated heads of RCONHCH(2)CF(3) and RCOOCH(2)CF(3) monolayers cause the opposite signs and the striking difference of 1.480 V between their surface potentials Delta V. In situ X-ray diffraction at grazing incidence (GIXD) shows that both monolayers form orthorhombic lattices with closely packed chains tilted to the next-nearest neighbors in the RCONHCH(2)CF(3) film and upright in the RCOOCH(2)CF(3) monolayer. The packing of the chains in the plane perpendicular to them, which excludes the effect of the tilt, shows the same distance between the next-nearest neighbors, but significantly closer nearest neighbors in the RCONHCH(2)CF(3) film. This difference implies a specific anisotropic attraction between the adjacent amide heads. IR reflection absorption spectroscopy (IRRAS) shows that the -CONHCH(2)CF(3) heads have trans conformation and participate in H-bonds forming a -NH...O=C- lateral network. We speculate that such structure hinders the energetically optimal orientation of the hydrophobic -CH(2)CF(3) terminals toward air, so that the (delta+)C-(F (delta-))(3) dipoles at the monolayer/water boundary yield a strong positive contribution to Delta V. In contrast, most of the unbounded by H-bonds -COOCH(2)CF(3) heads statistically orient their hydrophobic (delta+)C-(F (delta-))(3) dipoles toward air, yielding a negative average dipole moment at the monolayer/water boundary and negative surface dipole potential
Beschreibung:Date Completed 08.09.2008
Date Revised 31.07.2008
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la8009282