PEGylation of porous silicon using click chemistry
Porous silicon has received considerable interest in recent years in a range of biomedical applications, with its performance determined by surface chemistry. In this work, we investigate the PEGylation of porous silicon wafers using click chemistry. The porous silicon wafer surface chemistry was mo...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 15 vom: 05. Aug., Seite 7625-7 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Polyethylene Glycols 3WJQ0SDW1A Silicon Z4152N8IUI |
Zusammenfassung: | Porous silicon has received considerable interest in recent years in a range of biomedical applications, with its performance determined by surface chemistry. In this work, we investigate the PEGylation of porous silicon wafers using click chemistry. The porous silicon wafer surface chemistry was monitored at each stage of the reaction via photoacoustic Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, whereas sessile drop contact angle and model protein adsorption measurements were used to characterize the final PEGylated surface. This work highlights the simplicity of click-chemistry-based functionalization in tailoring the porous silicon surface chemistry and controlling protein-porous silicon interactions |
---|---|
Beschreibung: | Date Completed 08.09.2008 Date Revised 01.12.2018 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la801619v |