Gaussian MRF rotation-invariant features for image classification

Features based on Markov random field (MRF) models are sensitive to texture rotation. This paper develops an anisotropic circular Gaussian MRF (ACGMRF) model for retrieving rotation-invariant texture features. To overcome the singularity problem of the least squares estimate method, an approximate l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 7 vom: 26. Juli, Seite 951-5
1. Verfasser: Deng, Huawu (VerfasserIn)
Weitere Verfasser: Clausi, David A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Features based on Markov random field (MRF) models are sensitive to texture rotation. This paper develops an anisotropic circular Gaussian MRF (ACGMRF) model for retrieving rotation-invariant texture features. To overcome the singularity problem of the least squares estimate method, an approximate least squares estimate method is designed and implemented. Rotation-invariant features are obtained from the ACGMRF model parameters using the discrete Fourier transform. The ACGMRF model is demonstrated to be a statistical improvement over three published methods. The three methods include a Laplacian pyramid, an isotropic circular GMRF (ICGMRF), and gray level cooccurrence probability features
Beschreibung:Date Completed 31.07.2008
Date Revised 26.06.2008
published: Print
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2004.30