Inference of segmented color and texture description by tensor voting

A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture infor...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 6 vom: 26. Juni, Seite 771-86
1. Verfasser: Jia, Jiaya (VerfasserIn)
Weitere Verfasser: Tang, Chi-Keung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM180459163
003 DE-627
005 20231223155523.0
007 cr uuu---uuuuu
008 231223s2004 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2004.10  |2 doi 
028 5 2 |a pubmed24n0602.xml 
035 |a (DE-627)NLM180459163 
035 |a (NLM)18579937 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Jiaya  |e verfasserin  |4 aut 
245 1 0 |a Inference of segmented color and texture description by tensor voting 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2008 
500 |a Date Revised 26.06.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tang, Chi-Keung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 6 vom: 26. Juni, Seite 771-86  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:6  |g day:26  |g month:06  |g pages:771-86 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2004.10  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 6  |b 26  |c 06  |h 771-86