Linear dimensionality reduction via a heteroscedastic extension of LDA : the Chernoff criterion

We propose an eigenvector-based heteroscedastic linear dimension reduction (LDR) technique for multiclass data. The technique is based on a heteroscedastic two-class technique which utilizes the so-called Chernoff criterion, and successfully extends the well-known linear discriminant analysis (LDA)....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 6 vom: 26. Juni, Seite 732-9
1. Verfasser: Loog, Marco (VerfasserIn)
Weitere Verfasser: Duin, Robert P W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM180459139
003 DE-627
005 20231223155523.0
007 cr uuu---uuuuu
008 231223s2004 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2004.13  |2 doi 
028 5 2 |a pubmed24n0602.xml 
035 |a (DE-627)NLM180459139 
035 |a (NLM)18579934 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Loog, Marco  |e verfasserin  |4 aut 
245 1 0 |a Linear dimensionality reduction via a heteroscedastic extension of LDA  |b the Chernoff criterion 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2008 
500 |a Date Revised 26.06.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose an eigenvector-based heteroscedastic linear dimension reduction (LDR) technique for multiclass data. The technique is based on a heteroscedastic two-class technique which utilizes the so-called Chernoff criterion, and successfully extends the well-known linear discriminant analysis (LDA). The latter, which is based on the Fisher criterion, is incapable of dealing with heteroscedastic data in a proper way. For the two-class case, the between-class scatter is generalized so to capture differences in (co)variances. It is shown that the classical notion of between-class scatter can be associated with Euclidean distances between class means. From this viewpoint, the between-class scatter is generalized by employing the Chernoff distance measure, leading to our proposed heteroscedastic measure. Finally, using the results from the two-class case, a multiclass extension of the Chernoff criterion is proposed. This criterion combines separation information present in the class mean as well as the class covariance matrices. Extensive experiments and a comparison with similar dimension reduction techniques are presented 
650 4 |a Journal Article 
700 1 |a Duin, Robert P W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 6 vom: 26. Juni, Seite 732-9  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:6  |g day:26  |g month:06  |g pages:732-9 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2004.13  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 6  |b 26  |c 06  |h 732-9