Offline recognition of unconstrained handwritten texts using HMMs and statistical language models

This paper presents a system for the offline recognition of large vocabulary unconstrained handwritten texts. The only assumption made about the data is that it is written in English. This allows the application of Statistical Language Models in order to improve the performance of our system. Severa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 6 vom: 26. Juni, Seite 709-20
1. Verfasser: Vinciarelli, Alessandro (VerfasserIn)
Weitere Verfasser: Bengio, Samy, Bunke, Horst
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM180459112
003 DE-627
005 20231223155523.0
007 cr uuu---uuuuu
008 231223s2004 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2004.14  |2 doi 
028 5 2 |a pubmed24n0602.xml 
035 |a (DE-627)NLM180459112 
035 |a (NLM)18579932 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vinciarelli, Alessandro  |e verfasserin  |4 aut 
245 1 0 |a Offline recognition of unconstrained handwritten texts using HMMs and statistical language models 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.07.2008 
500 |a Date Revised 01.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper presents a system for the offline recognition of large vocabulary unconstrained handwritten texts. The only assumption made about the data is that it is written in English. This allows the application of Statistical Language Models in order to improve the performance of our system. Several experiments have been performed using both single and multiple writer data. Lexica of variable size (from 10,000 to 50,000 words) have been used. The use of language models is shown to improve the accuracy of the system (when the lexicon contains 50,000 words, the error rate is reduced by approximately 50 percent for single writer data and by approximately 25 percent for multiple writer data). Our approach is described in detail and compared with other methods presented in the literature to deal with the same problem. An experimental setup to correctly deal with unconstrained text recognition is proposed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Bengio, Samy  |e verfasserin  |4 aut 
700 1 |a Bunke, Horst  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 6 vom: 26. Juni, Seite 709-20  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:6  |g day:26  |g month:06  |g pages:709-20 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2004.14  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 6  |b 26  |c 06  |h 709-20