Reversible superhydrophobic to superhydrophilic conversion of AgTiO2 composite nanofiber surfaces

A new type of superhydrophobic material consisting of a surface with supported AgTiO(2) core-shell nanofibers has been prepared at low temperature by plasma-enhanced chemical vapor deposition (PECVD). The fibers are formed by an inner nanocrystalline silver thread which is covered by a TiO(2) overla...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 15 vom: 05. Aug., Seite 8021-6
1. Verfasser: Borras, Ana (VerfasserIn)
Weitere Verfasser: Barranco, Angel, González-Elipe, Agustín R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A new type of superhydrophobic material consisting of a surface with supported AgTiO(2) core-shell nanofibers has been prepared at low temperature by plasma-enhanced chemical vapor deposition (PECVD). The fibers are formed by an inner nanocrystalline silver thread which is covered by a TiO(2) overlayer. Water contact angles depend on the width of the fibers and on their surface concentration, reaching a maximum wetting angle close to 180 degrees for a surface concentration of approximately 15 fibers microm(-2) and a thickness of 200 nm. When irradiated with UV light, these surfaces become superhydrophilic (i.e., 0 degrees contact angle). The decrease rate of the contact angle depends on both the crystalline state of the titania and on the size of the individual TiO(2) domains covering the fibers. To the best of our knowledge, this is one of the few examples existing in the literature where a superhydrophobic surface transforms reversibly into a superhydrophilic one as an effect of light irradiation
Beschreibung:Date Completed 08.09.2008
Date Revised 30.07.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la800113n