Deformation modeling for robust 3D face matching

Face recognition based on 3D surface matching is promising for overcoming some of the limitations of current 2D image-based face recognition systems. The 3D shape is generally invariant to the pose and lighting changes, but not invariant to the non-rigid facial movement, such as expressions. Collect...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 30(2008), 8 vom: 05. Aug., Seite 1346-57
1. Verfasser: Lu, Xiaoguang (VerfasserIn)
Weitere Verfasser: Jain, Anil
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM180332686
003 DE-627
005 20250209134858.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70784  |2 doi 
028 5 2 |a pubmed25n0601.xml 
035 |a (DE-627)NLM180332686 
035 |a (NLM)18566490 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Xiaoguang  |e verfasserin  |4 aut 
245 1 0 |a Deformation modeling for robust 3D face matching 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.08.2008 
500 |a Date Revised 20.06.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Face recognition based on 3D surface matching is promising for overcoming some of the limitations of current 2D image-based face recognition systems. The 3D shape is generally invariant to the pose and lighting changes, but not invariant to the non-rigid facial movement, such as expressions. Collecting and storing multiple templates to account for various expressions for each subject in a large database is not practical. We propose a facial surface modeling and matching scheme to match 2.5D facial scans in the presence of both non-rigid deformations and pose changes (multiview) to a 3D face template. A hierarchical geodesic-based resampling approach is applied to extract landmarks for modeling facial surface deformations. We are able to synthesize the deformation learned from a small group of subjects (control group) onto a 3D neutral model (not in the control group), resulting in a deformed template. A user-specific (3D) deformable model is built by combining the templates with synthesized deformations. The matching distance is computed by fitting this generative deformable model to a test scan. A fully automatic and prototypic 3D face matching system has been developed. Experimental results demonstrate that the proposed deformation modeling scheme increases the 3D face matching accuracy 
650 4 |a Journal Article 
700 1 |a Jain, Anil  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 30(2008), 8 vom: 05. Aug., Seite 1346-57  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:8  |g day:05  |g month:08  |g pages:1346-57 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70784  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 8  |b 05  |c 08  |h 1346-57