Characterization of novel multifunctional cationic polymeric liposomes formed from octadecyl quaternized carboxymethyl chitosan/cholesterol and drug encapsulation

The design and construction of effective delivery vectors for drugs is very important. We have discovered that octadecyl quaternized carboxymethyl chitosan (OQCMC) in combination with cholesterol (Chol) could form stable vesicles with structure similar to that of conventional liposomes prepared from...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 14 vom: 15. Juli, Seite 7147-53
1. Verfasser: Liang, Xiao F (VerfasserIn)
Weitere Verfasser: Wang, Han J, Luo, Hao, Tian, Hui, Zhang, Bing B, Hao, Li J, Teng, Jon I, Chang, Jin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Capsules Cations Liposomes Peptides Polymers carboxymethyl-chitosan Vinculin 125361-02-6 mehr... Chitosan 9012-76-4 Cholesterol 97C5T2UQ7J
Beschreibung
Zusammenfassung:The design and construction of effective delivery vectors for drugs is very important. We have discovered that octadecyl quaternized carboxymethyl chitosan (OQCMC) in combination with cholesterol (Chol) could form stable vesicles with structure similar to that of conventional liposomes prepared from phosphatidylcholine/cholesterol (PC/Chol). Compared to conventional liposomes, our polymeric liposomes formed by OQCMC/Chol have many excellent features, such as good physical and thermal stability, excellent solubility in water, and high effectiveness in drug encapsulation. Trans-activating transcriptional activator protein (TAT peptide) could be connected on the surface of cationic polymeric liposomes by using cross-linking reagent N-hydroxysuccinimidyl-3-(2-pyridyldithio) propionate (SPDP). Also, oil-soluble magnetic nanoparticles were used to verify the bilayer structure of the polymeric liposomes and their ability to solublize hydrophobic materials. Using different preparation methods, OQCMC/Chol could easily be made into nanoscale particles by encapsulating both hydrophilic and hydrophobic components. We have successfully prepared polymeric liposomes encapsulating quantum dots (QDs), superparamagnetic nanoparticles, or both. Vincristine was also encapsulated in the polymeric liposomes with high drug encapsulation efficiency (90.1%). Vincristine-loaded magnetic polymeric liposomes were stable in aqueous solution and exhibited slow, steady release action over 2 weeks under physiologic pH (7.4). This allows the use of multifunctional cationic polymeric liposomes, such as those developed here from modified chitosan, in various applications such as cancer diagnosis and treatment
Beschreibung:Date Completed 15.08.2008
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la703775a