|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM180199552 |
003 |
DE-627 |
005 |
20240316232111.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/ern148
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1332.xml
|
035 |
|
|
|a (DE-627)NLM180199552
|
035 |
|
|
|a (NLM)18552353
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Peng, Mingsheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.11.2008
|
500 |
|
|
|a Date Revised 16.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Plants can survive a limiting nitrogen (N) supply by developing a set of N limitation adaptive responses. However, the Arabidopsis nla (nitrogen limitation adaptation) mutant fails to produce such responses, and cannot adapt to N limitation. In this study, the nla mutant was utilized to understand further the effect of NLA on Arabidopsis adaptation to N limitation. Grown with limiting N, the nla mutant could not accumulate anthocyanins and instead produced an N limitation-induced early senescence phenotype. In contrast, when supplied with limiting N and limiting phosphorus (Pi), the nla mutants accumulated abundant anthocyanins and did not show the N limitation-induced early senescence phenotype. These results support the hypothesis that Arabidopsis has a specific pathway to control N limitation-induced anthocyanin synthesis, and the nla mutation disrupts this pathway. However, the nla mutation does not affect the Pi limitation-induced anthocyanin synthesis pathway. Therefore, Pi limitation induced the nla mutant to accumulate anthocyanins under N limitation and allowed this mutant to adapt to N limitation. Under N limitation, the nla mutant had a significantly down-regulated expression of many genes functioning in anthocyanin synthesis, and an enhanced expression of genes involved in lignin production. Correspondingly, the nla mutant grown with limiting N showed a significantly lower production of anthocyanins (particularly cyanidins) and an increase in lignin contents compared with wild-type plants. These data suggest that NLA controls Arabidopsis adaptability to N limitation by channelling the phenylpropanoid metabolic flux to the induced anthocyanin synthesis, which is important for Arabidopsis to adapt to N limitation
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Anthocyanins
|2 NLM
|
650 |
|
7 |
|a Arabidopsis Proteins
|2 NLM
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Lignin
|2 NLM
|
650 |
|
7 |
|a 9005-53-2
|2 NLM
|
650 |
|
7 |
|a NLA protein, Arabidopsis
|2 NLM
|
650 |
|
7 |
|a EC 2.3.2.27
|2 NLM
|
650 |
|
7 |
|a Ubiquitin-Protein Ligases
|2 NLM
|
650 |
|
7 |
|a EC 2.3.2.27
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Hudson, Darryl
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schofield, Andrew
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tsao, Rong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Raymond
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gu, Honglan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bi, Yong-Mei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rothstein, Steven J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 59(2008), 11 vom: 12., Seite 2933-44
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:59
|g year:2008
|g number:11
|g day:12
|g pages:2933-44
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/ern148
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2008
|e 11
|b 12
|h 2933-44
|