Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond

Copyright 2008 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 1 vom: 15. Jan., Seite 119-31
1. Verfasser: Zyubin, A S (VerfasserIn)
Weitere Verfasser: Mebel, A M, Hayashi, M, Chang, H C, Lin, S H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM180163299
003 DE-627
005 20231223155018.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21042  |2 doi 
028 5 2 |a pubmed24n0601.xml 
035 |a (DE-627)NLM180163299 
035 |a (NLM)18548526 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zyubin, A S  |e verfasserin  |4 aut 
245 1 0 |a Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.12.2008 
500 |a Date Revised 27.11.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Copyright 2008 Wiley Periodicals, Inc. 
520 |a Quantum chemical calculations of geometric and electronic structure and vertical transition energies for several low-lying excited states of the neutral and negatively charged nitrogen-vacancy point defect in diamond (NV(0) and NV(-)) have been performed employing various theoretical methods and basis sets and using finite model NC(n)H(m) clusters. Unpaired electrons in the ground doublet state of NV(0) and triplet state of NV(-) are found to be localized mainly on three carbon atoms around the vacancy and the electronic density on the nitrogen and rest of C atoms is only weakly disturbed. The lowest excited states involve different electronic distributions on molecular orbitals localized close to the vacancy and their wave functions exhibit a strong multireference character with significant contributions from diffuse functions. CASSCF calculations underestimate excitation energies for the anionic defect and overestimate those for the neutral system. The inclusion of dynamic electronic correlation at the CASPT2 level leads to a reasonable agreement (within 0.25 eV) of the calculated transition energy to the lowest excited state with experiment for both systems. Several excited states for NV(-) are found in the energy range of 2-3 eV, but only for the 1(3)E and 5(3)E states the excitation probabilities from the ground state are significant, with the first absorption band calculated at approximately 1.9 eV and the second lying 0.8-1 eV higher in energy than the first one. For NV(0), we predict the following order of electronic states: 1(2)E (0.0), 1(2)A(2) (approximately 2.4 eV), 2(2)E (2.7-2.8 eV), 1(2)A(1), 3(2)E (approximately 3.2 eV and higher) 
650 4 |a Journal Article 
700 1 |a Mebel, A M  |e verfasserin  |4 aut 
700 1 |a Hayashi, M  |e verfasserin  |4 aut 
700 1 |a Chang, H C  |e verfasserin  |4 aut 
700 1 |a Lin, S H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 1 vom: 15. Jan., Seite 119-31  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:1  |g day:15  |g month:01  |g pages:119-31 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21042  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 1  |b 15  |c 01  |h 119-31