Effect of polymer architecture on the adsorption properties of a nonionic polymer

The adsorption of a linear- and bottle-brush poly(ethylene oxide (PEO))-based polymer, having comparable molecular weights, was studied by means of quartz crystal microbalance with dissipation monitoring ability (QCM-D) and AFM colloidal probe force measurements. The energy dissipation change monito...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 13 vom: 01. Juni, Seite 6676-82
1. Verfasser: Naderi, Ali (VerfasserIn)
Weitere Verfasser: Iruthayaraj, Joseph, Pettersson, Torbjörn, Makuska, Ricardas, Claesson, Per M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The adsorption of a linear- and bottle-brush poly(ethylene oxide (PEO))-based polymer, having comparable molecular weights, was studied by means of quartz crystal microbalance with dissipation monitoring ability (QCM-D) and AFM colloidal probe force measurements. The energy dissipation change monitored by QCM-D and the range of the steric forces obtained from force measurements demonstrated that linear PEO forms a more extended adsorption layer than the bottle-brush polymer, despite that the adsorbed mass is higher for the latter. Competitive adsorption studies revealed that linear PEO is readily displaced from the interface by the bottle-brush polymer. This was attributed to the higher surface affinity of the latter, which is governed by the number of contact points between the polymers and the interface, and the smaller loss of conformational entropy
Beschreibung:Date Completed 15.08.2008
Date Revised 26.06.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la800089v