Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation

Copyright 2008 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 1 vom: 15. Jan., Seite 40-50
1. Verfasser: Komeiji, Yuto (VerfasserIn)
Weitere Verfasser: Ishikawa, Takeshi, Mochizuki, Yuji, Yamataka, Hiroshi, Nakano, Tatsuya
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Solvents Water 059QF0KO0R
LEADER 01000naa a22002652 4500
001 NLM179805630
003 DE-627
005 20231223154409.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21025  |2 doi 
028 5 2 |a pubmed24n0599.xml 
035 |a (DE-627)NLM179805630 
035 |a (NLM)18504778 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Komeiji, Yuto  |e verfasserin  |4 aut 
245 1 0 |a Fragment Molecular Orbital method-based Molecular Dynamics (FMO-MD) as a simulator for chemical reactions in explicit solvation 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.12.2008 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2008 Wiley Periodicals, Inc. 
520 |a Fragment Molecular Orbital based-Molecular Dynamics (FMO-MD, Komeiji et al., Chem Phys Lett 2003, 372, 342) is an ab initio MD method suitable for large molecular systems. Here, FMO-MD was implemented to conduct full quantum simulations of chemical reactions in explicit solvation. Several FMO-MD simulations were performed for a sphere of water to find a suitable simulation protocol. It was found that annealing of the initial configuration by a classical MD brought the subsequent FMO-MD trajectory to faster stabilization, and also that use of bond constraint in the FMO-MD heating stage effectively reduced the computation time. Then, the blue moon ensemble method (Sprik and Ciccotti, J Chem Phys 1998, 109, 7737) was implemented and was tested by calculating free energy profiles of the Menschutkin reaction (H3N + CH3Cl --> +H3NCH3 + Cl-) in the presence and absence of the solvent water via FMO-MD. The obtained free energy profiles were consistent with the Hammond postulate in that stabilization of the product by the solvent, namely hydration of Cl-, shifted the transition state to the reactant-side. Based on these FMO-MD results, plans for further improvement of the method are discussed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Solvents  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Ishikawa, Takeshi  |e verfasserin  |4 aut 
700 1 |a Mochizuki, Yuji  |e verfasserin  |4 aut 
700 1 |a Yamataka, Hiroshi  |e verfasserin  |4 aut 
700 1 |a Nakano, Tatsuya  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 1 vom: 15. Jan., Seite 40-50  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:1  |g day:15  |g month:01  |g pages:40-50 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21025  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 1  |b 15  |c 01  |h 40-50