Lipid nanotubule fabrication by microfluidic tweezing

There is currently great interest in the development of lipid enclosed systems with complex geometrical arrangements that mimic cellular compartments. With biochemical functionalization, these soft matter devices can be used to probe deeper into life's transport dominated biochemical operations...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 13 vom: 01. Juni, Seite 6754-8
1. Verfasser: West, Jonathan (VerfasserIn)
Weitere Verfasser: Manz, Andreas, Dittrich, Petra S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM179791494
003 DE-627
005 20231223154356.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1021/la8004823  |2 doi 
028 5 2 |a pubmed24n0599.xml 
035 |a (DE-627)NLM179791494 
035 |a (NLM)18503287 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a West, Jonathan  |e verfasserin  |4 aut 
245 1 0 |a Lipid nanotubule fabrication by microfluidic tweezing 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.08.2008 
500 |a Date Revised 25.06.2008 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There is currently great interest in the development of lipid enclosed systems with complex geometrical arrangements that mimic cellular compartments. With biochemical functionalization, these soft matter devices can be used to probe deeper into life's transport dominated biochemical operations. In this paper, we present a novel tool for machining lipid nanotubules by microfluidic tweezing. A bilayer poly(dimethylsiloxane) (PDMS) device was designed with a lipid reservoir that was loaded by capillary action for lipid film deposition. The lipid reservoir is vertically separated from an upper flow for controlled material wetting and the formation of giant tubule bodies. Three fluidic paths are interfaced for introduction of the giant tubules into the high velocity center of a parabolic flow profile for exposure to hydrodynamic shear stresses. At local velocities approximating 2 mm s (-1), a 300-500 nm diameter jet of lipid material was tweezed from the giant tubule body and elongated with the flow. The high velocity flow provides uniform drag for the rapid and continuous fabrication of lipid nanotubules with tremendous axial ratios. Below a critical velocity, a remarkable shape transformation occurred and the projected lipid tubule grew until a constant 3.6 mum diameter tubule was attained. These lipid tubules could be wired for the construction of advanced lifelike bioreactor systems 
650 4 |a Journal Article 
700 1 |a Manz, Andreas  |e verfasserin  |4 aut 
700 1 |a Dittrich, Petra S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 24(2008), 13 vom: 01. Juni, Seite 6754-8  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:24  |g year:2008  |g number:13  |g day:01  |g month:06  |g pages:6754-8 
856 4 0 |u http://dx.doi.org/10.1021/la8004823  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 24  |j 2008  |e 13  |b 01  |c 06  |h 6754-8