Molecular screening of metal-organic frameworks for CO2 storage

We report a molecular simulation study for CO2 storage in metal-organic frameworks (MOFs). As compared to the aluminum-free and cation-exchanged ZSM-5 zeolites and carbon nanotube bundle, IRMOF1 exhibits remarkably higher capacity. Incorporation of Na(+) cations into zeolite increases the capacity o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 12 vom: 17. Juni, Seite 6270-8
1. Verfasser: Babarao, Ravichandar (VerfasserIn)
Weitere Verfasser: Jiang, Jianwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM17961519X
003 DE-627
005 20231223154059.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1021/la800369s  |2 doi 
028 5 2 |a pubmed24n0599.xml 
035 |a (DE-627)NLM17961519X 
035 |a (NLM)18484751 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Babarao, Ravichandar  |e verfasserin  |4 aut 
245 1 0 |a Molecular screening of metal-organic frameworks for CO2 storage 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.08.2008 
500 |a Date Revised 11.06.2008 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We report a molecular simulation study for CO2 storage in metal-organic frameworks (MOFs). As compared to the aluminum-free and cation-exchanged ZSM-5 zeolites and carbon nanotube bundle, IRMOF1 exhibits remarkably higher capacity. Incorporation of Na(+) cations into zeolite increases the capacity only at low pressures. By variation of the metal oxide, organic linker, functional group, and framework topology, a series of isoreticular MOFs (IRMOF1, Mg-IRMOF1, Be-IRMOF1, IRMOF1-(NH2)4, IRMOF10, IRMOF13, and IRMOF14) are systematically examined, as well as UMCM-1, a fluorous MOF (F-MOF1), and a covalent-organic framework (COF102). The affinity with CO2 is enhanced by addition of a functional group, and the constricted pore is formed by interpenetration of the framework; both lead to a larger isosteric heat and Henry's constant and subsequently a stronger adsorption at low pressures. The organic linker plays a critical role in tuning the free volume and accessible surface area and largely determines CO2 adsorption at high pressures. As a combination of high capacity and low framework density, IRMOF10, IRMOF14, and UMCM-1 are identified from this study to be the best for CO2 storage, even surpass the experimentally reported highest capacity in MOF-177. COF102 is a promising candidate with high capacity at considerably low pressures. Both gravimetric and volumetric capacities at 30 bar correlate well with the framework density, free volume, porosity, and accessible surface area. These structure-function correlations are useful for a priori prediction of CO2 capacity and for the rational screening of MOFs toward high-efficacy CO2 storage 
650 4 |a Journal Article 
700 1 |a Jiang, Jianwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 24(2008), 12 vom: 17. Juni, Seite 6270-8  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:24  |g year:2008  |g number:12  |g day:17  |g month:06  |g pages:6270-8 
856 4 0 |u http://dx.doi.org/10.1021/la800369s  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 24  |j 2008  |e 12  |b 17  |c 06  |h 6270-8