|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM179597221 |
003 |
DE-627 |
005 |
20231223154043.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2008.922421
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0599.xml
|
035 |
|
|
|a (DE-627)NLM179597221
|
035 |
|
|
|a (NLM)18482883
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jia, Kui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Generalized face super-resolution
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 19.06.2008
|
500 |
|
|
|a Date Revised 16.05.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Existing learning-based face super-resolution (hallucination) techniques generate high-resolution images of a single facial modality (i.e., at a fixed expression, pose and illumination) given one or set of low-resolution face images as probe. Here, we present a generalized approach based on a hierarchical tensor (multilinear) space representation for hallucinating high-resolution face images across multiple modalities, achieving generalization to variations in expression and pose. In particular, we formulate a unified tensor which can be reduced to two parts: a global image-based tensor for modeling the mappings among different facial modalities, and a local patch-based multiresolution tensor for incorporating high-resolution image details. For realistic hallucination of unregistered low-resolution faces contained in raw images, we develop an automatic face alignment algorithm capable of pixel-wise alignment by iteratively warping the probing face to its projection in the space of training face images. Our experiments show not only performance superiority over existing benchmark face super-resolution techniques on single modal face hallucination, but also novelty of our approach in coping with multimodal hallucination and its robustness in automatic alignment under practical imaging conditions
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Gong, Shaogang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 17(2008), 6 vom: 01. Juni, Seite 873-86
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:17
|g year:2008
|g number:6
|g day:01
|g month:06
|g pages:873-86
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2008.922421
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 17
|j 2008
|e 6
|b 01
|c 06
|h 873-86
|