Generalized face super-resolution

Existing learning-based face super-resolution (hallucination) techniques generate high-resolution images of a single facial modality (i.e., at a fixed expression, pose and illumination) given one or set of low-resolution face images as probe. Here, we present a generalized approach based on a hierar...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 6 vom: 01. Juni, Seite 873-86
1. Verfasser: Jia, Kui (VerfasserIn)
Weitere Verfasser: Gong, Shaogang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM179597221
003 DE-627
005 20231223154043.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.922421  |2 doi 
028 5 2 |a pubmed24n0599.xml 
035 |a (DE-627)NLM179597221 
035 |a (NLM)18482883 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jia, Kui  |e verfasserin  |4 aut 
245 1 0 |a Generalized face super-resolution 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.06.2008 
500 |a Date Revised 16.05.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Existing learning-based face super-resolution (hallucination) techniques generate high-resolution images of a single facial modality (i.e., at a fixed expression, pose and illumination) given one or set of low-resolution face images as probe. Here, we present a generalized approach based on a hierarchical tensor (multilinear) space representation for hallucinating high-resolution face images across multiple modalities, achieving generalization to variations in expression and pose. In particular, we formulate a unified tensor which can be reduced to two parts: a global image-based tensor for modeling the mappings among different facial modalities, and a local patch-based multiresolution tensor for incorporating high-resolution image details. For realistic hallucination of unregistered low-resolution faces contained in raw images, we develop an automatic face alignment algorithm capable of pixel-wise alignment by iteratively warping the probing face to its projection in the space of training face images. Our experiments show not only performance superiority over existing benchmark face super-resolution techniques on single modal face hallucination, but also novelty of our approach in coping with multimodal hallucination and its robustness in automatic alignment under practical imaging conditions 
650 4 |a Journal Article 
700 1 |a Gong, Shaogang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 6 vom: 01. Juni, Seite 873-86  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:6  |g day:01  |g month:06  |g pages:873-86 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.922421  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 6  |b 01  |c 06  |h 873-86