Using support vector machine to predict beta- and gamma-turns in proteins

(c) 2008 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 29(2008), 12 vom: 30. Sept., Seite 1867-75
1. Verfasser: Hu, Xiuzhen (VerfasserIn)
Weitere Verfasser: Li, Qianzhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Proteins
LEADER 01000naa a22002652 4500
001 NLM179119710
003 DE-627
005 20231223153236.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.20929  |2 doi 
028 5 2 |a pubmed24n0597.xml 
035 |a (DE-627)NLM179119710 
035 |a (NLM)18432623 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Xiuzhen  |e verfasserin  |4 aut 
245 1 0 |a Using support vector machine to predict beta- and gamma-turns in proteins 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.09.2008 
500 |a Date Revised 28.07.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2008 Wiley Periodicals, Inc. 
520 |a By using the composite vector with increment of diversity, position conservation scoring function, and predictive secondary structures to express the information of sequence, a support vector machine (SVM) algorithm for predicting beta- and gamma-turns in the proteins is proposed. The 426 and 320 nonhomologous protein chains described by Guruprasad and Rajkumar (Guruprasad and Rajkumar J. Biosci 2000, 25,143) are used for training and testing the predictive model of the beta- and gamma-turns, respectively. The overall prediction accuracy and the Matthews correlation coefficient in 7-fold cross-validation are 79.8% and 0.47, respectively, for the beta-turns. The overall prediction accuracy in 5-fold cross-validation is 61.0% for the gamma-turns. These results are significantly higher than the other algorithms in the prediction of beta- and gamma-turns using the same datasets. In addition, the 547 and 823 nonhomologous protein chains described by Fuchs and Alix (Fuchs and Alix Proteins: Struct Funct Bioinform 2005, 59, 828) are used for training and testing the predictive model of the beta- and gamma-turns, and better results are obtained. This algorithm may be helpful to improve the performance of protein turns' prediction. To ensure the ability of the SVM method to correctly classify beta-turn and non-beta-turn (gamma-turn and non-gamma-turn), the receiver operating characteristic threshold independent measure curves are provided 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Proteins  |2 NLM 
700 1 |a Li, Qianzhong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 29(2008), 12 vom: 30. Sept., Seite 1867-75  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:29  |g year:2008  |g number:12  |g day:30  |g month:09  |g pages:1867-75 
856 4 0 |u http://dx.doi.org/10.1002/jcc.20929  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2008  |e 12  |b 30  |c 09  |h 1867-75