Subclass problem-dependent design for error-correcting output codes

A common way to model multi-class classification problems is by means of Error-Correcting Output Codes (ECOC). Given a multi-class problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A clas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 6 vom: 20. Juni, Seite 1041-54
1. Verfasser: Escalera, Sergio (VerfasserIn)
Weitere Verfasser: Tax, David M J, Pujol, Oriol, Radeva, Petia, Duin, Robert P W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM179010603
003 DE-627
005 20231223153046.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.38  |2 doi 
028 5 2 |a pubmed24n0597.xml 
035 |a (DE-627)NLM179010603 
035 |a (NLM)18421109 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Escalera, Sergio  |e verfasserin  |4 aut 
245 1 0 |a Subclass problem-dependent design for error-correcting output codes 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.06.2008 
500 |a Date Revised 18.04.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A common way to model multi-class classification problems is by means of Error-Correcting Output Codes (ECOC). Given a multi-class problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each sub-group of classes from each binary problem. However, we can not guarantee that a linear classifier model convex regions. Furthermore, non-linear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multi-class classification problems using sub-class information in the ECOC framework. Complex problems are solved by splitting the original set of classes into sub-classes, and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceil the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tax, David M J  |e verfasserin  |4 aut 
700 1 |a Pujol, Oriol  |e verfasserin  |4 aut 
700 1 |a Radeva, Petia  |e verfasserin  |4 aut 
700 1 |a Duin, Robert P W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 6 vom: 20. Juni, Seite 1041-54  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:6  |g day:20  |g month:06  |g pages:1041-54 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.38  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 6  |b 20  |c 06  |h 1041-54