Infinite hidden Markov models for unusual-event detection in video

We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using "normal"/&q...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 5 vom: 01. Mai, Seite 811-22
1. Verfasser: Pruteanu-Malinici, Iulian (VerfasserIn)
Weitere Verfasser: Carin, Lawrence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article
LEADER 01000caa a22002652 4500
001 NLM178718009
003 DE-627
005 20250209090654.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.919359  |2 doi 
028 5 2 |a pubmed25n0596.xml 
035 |a (DE-627)NLM178718009 
035 |a (NLM)18390385 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pruteanu-Malinici, Iulian  |e verfasserin  |4 aut 
245 1 0 |a Infinite hidden Markov models for unusual-event detection in video 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.06.2008 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We address the problem of unusual-event detection in a video sequence. Invariant subspace analysis (ISA) is used to extract features from the video, and the time-evolving properties of these features are modeled via an infinite hidden Markov model (iHMM), which is trained using "normal"/"typical" video. The iHMM retains a full posterior density function on all model parameters, including the number of underlying HMM states. Anomalies (unusual events) are detected subsequently if a low likelihood is observed when associated sequential features are submitted to the trained iHMM. A hierarchical Dirichlet process framework is employed in the formulation of the iHMM. The evaluation of posterior distributions for the iHMM is achieved in two ways: via Markov chain Monte Carlo and using a variational Bayes formulation. Comparisons are made to modeling based on conventional maximum-likelihood-based HMMs, as well as to Dirichlet-process-based Gaussian-mixture models 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Carin, Lawrence  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 5 vom: 01. Mai, Seite 811-22  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:5  |g day:01  |g month:05  |g pages:811-22 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.919359  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 5  |b 01  |c 05  |h 811-22