Unified anomaly suppression and boundary extraction in laser radar range imagery based on a joint curve-evolution and expectation-maximization algorithm

In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 5 vom: 01. Mai, Seite 757-66
1. Verfasser: Feng, Haihua (VerfasserIn)
Weitere Verfasser: Karl, William Clem, Castañon, David A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM178717959
003 DE-627
005 20231223152555.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.919363  |2 doi 
028 5 2 |a pubmed24n0596.xml 
035 |a (DE-627)NLM178717959 
035 |a (NLM)18390380 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Feng, Haihua  |e verfasserin  |4 aut 
245 1 0 |a Unified anomaly suppression and boundary extraction in laser radar range imagery based on a joint curve-evolution and expectation-maximization algorithm 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.06.2008 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we develop a new unified approach for laser radar range anomaly suppression, range profiling, and segmentation. This approach combines an object-based hybrid scene model for representing the range distribution of the field and a statistical mixture model for the range data measurement noise. The image segmentation problem is formulated as a minimization problem which jointly estimates the target boundary together with the target region range variation and background range variation directly from the noisy and anomaly-filled range data. This formulation allows direct incorporation of prior information concerning the target boundary, target ranges, and background ranges into an optimal reconstruction process. Curve evolution techniques and a generalized expectation-maximization algorithm are jointly employed as an efficient solver for minimizing the objective energy, resulting in a coupled pair of object and intensity optimization tasks. The method directly and optimally extracts the target boundary, avoiding a suboptimal two-step process involving image smoothing followed by boundary extraction. Experiments are presented demonstrating that the proposed approach is robust to anomalous pixels (missing data) and capable of producing accurate estimation of the target boundary and range values from noisy data 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Karl, William Clem  |e verfasserin  |4 aut 
700 1 |a Castañon, David A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 5 vom: 01. Mai, Seite 757-66  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:5  |g day:01  |g month:05  |g pages:757-66 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.919363  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 5  |b 01  |c 05  |h 757-66