A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution

We present a fast variational deconvolution algorithm that minimizes a quadratic data term subject to a regularization on the l(1)-norm of the wavelet coefficients of the solution. Previously available methods have essentially consisted in alternating between a Landweber iteration and a wavelet-doma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 4 vom: 01. Apr., Seite 539-49
1. Verfasser: Vonesch, C (VerfasserIn)
Weitere Verfasser: Unser, M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM178717770
003 DE-627
005 20231223152555.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.917103  |2 doi 
028 5 2 |a pubmed24n0596.xml 
035 |a (DE-627)NLM178717770 
035 |a (NLM)18390362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Vonesch, C  |e verfasserin  |4 aut 
245 1 2 |a A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.05.2008 
500 |a Date Revised 08.04.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a fast variational deconvolution algorithm that minimizes a quadratic data term subject to a regularization on the l(1)-norm of the wavelet coefficients of the solution. Previously available methods have essentially consisted in alternating between a Landweber iteration and a wavelet-domain soft-thresholding operation. While having the advantage of simplicity, they are known to converge slowly. By expressing the cost functional in a Shannon wavelet basis, we are able to decompose the problem into a series of subband-dependent minimizations. In particular, this allows for larger (subband-dependent) step sizes and threshold levels than the previous method. This improves the convergence properties of the algorithm significantly. We demonstrate a speed-up of one order of magnitude in practical situations. This makes wavelet-regularized deconvolution more widely accessible, even for applications with a strong limitation on computational complexity. We present promising results in 3-D deconvolution microscopy, where the size of typical data sets does not permit more than a few tens of iterations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Unser, M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 4 vom: 01. Apr., Seite 539-49  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:4  |g day:01  |g month:04  |g pages:539-49 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.917103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 4  |b 01  |c 04  |h 539-49