|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM178717770 |
003 |
DE-627 |
005 |
20231223152555.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2008.917103
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0596.xml
|
035 |
|
|
|a (DE-627)NLM178717770
|
035 |
|
|
|a (NLM)18390362
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Vonesch, C
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.05.2008
|
500 |
|
|
|a Date Revised 08.04.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We present a fast variational deconvolution algorithm that minimizes a quadratic data term subject to a regularization on the l(1)-norm of the wavelet coefficients of the solution. Previously available methods have essentially consisted in alternating between a Landweber iteration and a wavelet-domain soft-thresholding operation. While having the advantage of simplicity, they are known to converge slowly. By expressing the cost functional in a Shannon wavelet basis, we are able to decompose the problem into a series of subband-dependent minimizations. In particular, this allows for larger (subband-dependent) step sizes and threshold levels than the previous method. This improves the convergence properties of the algorithm significantly. We demonstrate a speed-up of one order of magnitude in practical situations. This makes wavelet-regularized deconvolution more widely accessible, even for applications with a strong limitation on computational complexity. We present promising results in 3-D deconvolution microscopy, where the size of typical data sets does not permit more than a few tens of iterations
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Unser, M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 17(2008), 4 vom: 01. Apr., Seite 539-49
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:17
|g year:2008
|g number:4
|g day:01
|g month:04
|g pages:539-49
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2008.917103
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 17
|j 2008
|e 4
|b 01
|c 04
|h 539-49
|