|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM178228869 |
003 |
DE-627 |
005 |
20231223151745.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la7034938
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0594.xml
|
035 |
|
|
|a (DE-627)NLM178228869
|
035 |
|
|
|a (NLM)18338911
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Albesa, Alberto G
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Comparative study of methane adsorption on graphite
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.05.2008
|
500 |
|
|
|a Date Revised 01.04.2008
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a To study methane adsorption on graphite in a wide range of coverages and temperatures, we compare experimental results with Monte Carlo simulations (MCSs) of the grand canonical ensemble (GCE) and mean-field approximation (MFA) of the lattice gas model (LGM). MCSs were performed by employing two models for the substrate description; we utilized Steele's 10-4-3 analytical potential, and as a second approach, we represented the graphite surface as composed of several graphene layers (at the atomic level). We obtained adsorption isotherms and density profiles that confirm a layer-by-layer mechanism at low temperatures; the later results in the analytical model having a denser condensed phase than the atomistic one. LGM calculations show a close-packed lattice configuration and also allow us to describe the adsorption mechanism changes with temperature. The isosteric heat of adsorption that was found was approximately 13 kJ/mol. We can also conclude that, in spite of the greater computational cost, the atomistic model could be employed for surfaces that are not necessarily homogeneous and beyond the low-pressure range that are not covered by the simple, fast description given by the analytical model
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Llanos, Jorge L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Vicente, José L
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 24(2008), 8 vom: 15. Apr., Seite 3836-40
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2008
|g number:8
|g day:15
|g month:04
|g pages:3836-40
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la7034938
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2008
|e 8
|b 15
|c 04
|h 3836-40
|