Lipid nanotube formation from streptavidin-membrane binding

A novel transformation of giant lipid vesicles to produce nanotubular structures was observed upon the binding of streptavidin to biotinylated membranes. Unlike membrane budding and tubulation processes caused by proteins involved with endocytosis and vesicle fusion, streptavidin is known to crystal...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 8 vom: 15. Apr., Seite 3686-9
1. Verfasser: Liu, Haiqing (VerfasserIn)
Weitere Verfasser: Bachand, George D, Kim, Hahkjoon, Hayden, Carl C, Abate, Elisa A, Sasaki, Darryl Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Lipids Streptavidin 9013-20-1
Beschreibung
Zusammenfassung:A novel transformation of giant lipid vesicles to produce nanotubular structures was observed upon the binding of streptavidin to biotinylated membranes. Unlike membrane budding and tubulation processes caused by proteins involved with endocytosis and vesicle fusion, streptavidin is known to crystallize at near the isoelectric point (pI 5 to 6) into planar sheets against biotinylated films. We have found, however, that at neutral pH membranes of low bending rigidity (<10kT), such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), spontaneously produce tubular structures with widths ranging from micrometers to below the diffraction limit (<250 nm) and lengths spanning up to hundreds of micrometers. The nanotubes were typically held taut between surface-bound vesicles suggesting high membrane tension, yet the lipid nanotubes exhibited a fluidic nature that enabled the transport of entrained vesicles. Confocal microscopy confirmed the uniform coating of streptavidin over the vesicles and nanotubes. Giant vesicles composed of lipid membranes of higher bending energy exhibited only aggregation in the presence of streptavidin. Routes toward the development of these highly curved membrane structures are discussed in terms of general protein-membrane interactions
Beschreibung:Date Completed 05.05.2008
Date Revised 01.04.2008
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la704018s