Tunable wettability of polyimide films based on electrostatic self-assembly of ionic liquids

We have demonstrated that the surface wettability of negatively charged polyimide films could be tuned by electrostatic self-assembly of ionic liquids. The water contact angles of the polyimide films varied in the range 27-80 degrees for 13 different ionic liquids based on imidazolium and ammonium s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 8 vom: 15. Apr., Seite 3937-43
1. Verfasser: Zhao, Yan (VerfasserIn)
Weitere Verfasser: Li, Mei, Lu, Qinghua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We have demonstrated that the surface wettability of negatively charged polyimide films could be tuned by electrostatic self-assembly of ionic liquids. The water contact angles of the polyimide films varied in the range 27-80 degrees for 13 different ionic liquids based on imidazolium and ammonium salts. The surface morphology of the resulting surfaces was characterized using atomic force microscopy. The results revealed that the assembly of longer-substituent cations was characterized by the formation of spherical nanoparticles that were formed due to sequent aggregation of cations on those electrostatically assembled ones via hydrophobic interaction. In this case, the counteranions are present in the assembled layers and the wettability is accordingly affected. Whereas for shorter-substituent cations, no aggregates were formed due to the less hydrophobic interaction than the electrostatic repulsive interaction between the cations, and the counteranions were absent from the assembled layers. This method can also be utilized to quantify the hydrophobicity of various ionic liquids
Beschreibung:Date Completed 05.05.2008
Date Revised 01.04.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la703673s