Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity
We report on a novel and facile approach for the direct growth of F-doped flower-like TiO(2) nanostructures on the surface of Ti in HF solutions under low-temperature hydrothermal conditions. The influence of the experimental parameters such as temperature, reaction duration, and the HF concentratio...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 7 vom: 01. Apr., Seite 3503-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We report on a novel and facile approach for the direct growth of F-doped flower-like TiO(2) nanostructures on the surface of Ti in HF solutions under low-temperature hydrothermal conditions. The influence of the experimental parameters such as temperature, reaction duration, and the HF concentration on the morphology and photoelectrocatalytic activity of the formed F-doped flower-like TiO(2) nanostructures was systematically studied. The presence of HF and the reaction time play an important role in the formation of the F-doped flower-like TiO(2) nanostructures. The synthesized novel F-doped TiO(2) flower-like nanomaterials possess good crystallinity and exhibit high photoelectrochemical activity for water-splitting and photodegradation of organic pollutants compared with P-25, which is currently considered to be one of the best commercial TiO(2) photocatalysts. The approach described in this study provides a simple and novel method to synthesize F-doped TiO(2) nanostructured materials that are ready for practical applications such as the photodegradation of wastewater |
---|---|
Beschreibung: | Date Completed 05.05.2008 Date Revised 25.03.2008 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/la703098g |