Model system for the study of 2D phase transitions and supramolecular interactions at electrified interfaces : hydrogen-assisted reductive desorption of catechol-derived adlayers from Pt(111) single-crystal electrodes

Classical electroanalytical techniques and in situ FTIR are used to study the oxidative chemisorption of catechol (o-H(2)Q) and the hydrogen-assisted reductive desorption of catechol-derived adlayers (o-Q((ads))) at nearly defect-free Pt(111) single-crystal electrodes in 0.5 M H(2)SO(4). At near equ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 24(2008), 7 vom: 01. Apr., Seite 3551-61
1. Verfasser: Rodriguez-Lopez, Margarita (VerfasserIn)
Weitere Verfasser: Rodes, Antonio, Berna, Antonio, Climent, Victor, Herrero, Enrique, Tuñon, Paulino, Feliu, Juan M, Aldaz, Antonio, Carrasquillo, Arnaldo Jr
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Classical electroanalytical techniques and in situ FTIR are used to study the oxidative chemisorption of catechol (o-H(2)Q) and the hydrogen-assisted reductive desorption of catechol-derived adlayers (o-Q((ads))) at nearly defect-free Pt(111) single-crystal electrodes in 0.5 M H(2)SO(4). At near equilibrium conditions (lim(upsilon-->0)) the cyclic voltammetric response does not conform to the behavior expected from classical models of molecular adsorption at electrochemical interfaces. Instead, attractive interactions play a controlling role, i.e., hydrogen-assisted displacement of o-Q((ads)) takes place as an electrochemically reversible two-dimensional (2D) phase transition controlled by collision-nucleation-growth phenomena in the presence of 2 mM o-H(2)Q((aq)). In contrast, different desorption dynamics are observed when the reductive desorption of the adlayers is carried out in clean (0 mM o-H(2)Q((aq)) supporting electrolyte. Donor-acceptor (DA) interactions between the Pt(111)/o-Q((ads)) surface adduct and o-H(2)Q((aq)) are postulated as a possible intervening mechanism leading to the observed differences in the macroscopic electrochemical responses. The results also demonstrate that in aqueous solutions it is thermodynamically feasible to shift the formal oxidation potential of catechol-metal adducts to potentials near those of molecular hydrogen via chemically reversible, nondissociative interactions, taking place as a 2D phase transition
Beschreibung:Date Completed 05.05.2008
Date Revised 26.03.2008
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0743-7463
DOI:10.1021/la702654v