Multichannel restoration of single channel images using a wavelet-based subband decomposition
We present a new matrix vector formulation of a wavelet-based subband decomposition. This formulation allows for the decomposition of both the convolution operator and the signal in the subband domain. With this approach, any single channel linear space-invariant filtering problem can be cast into a...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 3(1994), 6 vom: 15., Seite 821-33 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
1994
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | We present a new matrix vector formulation of a wavelet-based subband decomposition. This formulation allows for the decomposition of both the convolution operator and the signal in the subband domain. With this approach, any single channel linear space-invariant filtering problem can be cast into a multichannel framework. We apply this decomposition to the linear space-invariant image restoration problem and propose a family of multichannel linear minimum mean square error (LMMSE) restoration filters. These filters explicitly incorporate both within and between subband (channel) relations of the decomposed image. Since only within channel stationarity is assumed in the image model, this approach presents a new method for modeling the nonstationarity of images. Experimental results are presented which test the proposed multichannel LMMSE filters. These experiments show that if accurate estimates of the subband statistics are available, the proposed multichannel filters provide major improvements over the traditional single channel filters |
---|---|
Beschreibung: | Date Completed 02.10.2012 Date Revised 25.02.2008 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1057-7149 |