Inverse and approximation problem for two-dimensional fractal sets

The geometry of fractals is rich enough that they have extensively been used to model natural phenomena and images. Iterated function systems (IFS) theory provides a convenient way to describe and classify deterministic fractals in the form of a recursive definition. As a result, it is conceivable t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 3(1994), 6 vom: 15., Seite 802-20
1. Verfasser: Rinaldo, R (VerfasserIn)
Weitere Verfasser: Zakhor, A
Format: Aufsatz
Sprache:English
Veröffentlicht: 1994
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The geometry of fractals is rich enough that they have extensively been used to model natural phenomena and images. Iterated function systems (IFS) theory provides a convenient way to describe and classify deterministic fractals in the form of a recursive definition. As a result, it is conceivable to develop image representation schemes based on the IFS parameters that correspond to a given fractal image. In this paper, we consider two distinct problems: an inverse problem and an approximation problem. The inverse problem involves finding the IFS parameters of a signal that is exactly generated via an IFS. We make use of the wavelet transform and of the image moments to solve the inverse problem. The approximation problem involves finding a fractal IFS-generated image whose moments match, either exactly or in a mean squared error sense, a range of moments of the original image. The approximating measures are generated by an IFS model of a special form and provide a general basis for the approximation of arbitrary images. Experimental results verifying our approach will be presented
Beschreibung:Date Completed 02.10.2012
Date Revised 25.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1057-7149