Unique tomographic reconstruction of vector fields using boundary data

The problem of reconstructing a vector field v(r) from its line integrals (through some domain D) is generally undetermined since v(r) is defined by two component functions. When v(r) is decomposed into its irrotational and solenoidal components, it is shown that the solenoidal part is uniquely dete...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 1(1992), 3 vom: 15., Seite 406-12
1. Verfasser: Norton, S J (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 1992
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM17782266X
003 DE-627
005 20250209062459.0
007 tu
008 231223s1992 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM17782266X 
035 |a (NLM)18296172 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Norton, S J  |e verfasserin  |4 aut 
245 1 0 |a Unique tomographic reconstruction of vector fields using boundary data 
264 1 |c 1992 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 25.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The problem of reconstructing a vector field v(r) from its line integrals (through some domain D) is generally undetermined since v(r) is defined by two component functions. When v(r) is decomposed into its irrotational and solenoidal components, it is shown that the solenoidal part is uniquely determined by the line integrals of v(r). This is demonstrated in a particularly simple manner in the Fourier domain using a vector analog of the well-known projection slice theorem. In addition, under the constraint that v (r) is divergenceless in D, a formula for the scalar potential phi(r) is given in terms of the normal component of v(r) on the boundary D. An important application of vector tomography, i.e., a fluid velocity field from reciprocal acoustic travel time measurements or Doppler backscattering measurements, is considered 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 1(1992), 3 vom: 15., Seite 406-12  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:1  |g year:1992  |g number:3  |g day:15  |g pages:406-12 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 1  |j 1992  |e 3  |b 15  |h 406-12