Nonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks

Two approaches for ultrasonic image processing are examined. First, signal-adaptive maximum likelihood (SAML) filters are proposed for ultrasonic speckle removal. It is shown that in the case of displayed ultrasound (US) image data the maximum likelihood (ML) estimator of the original (noiseless) si...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 3(1994), 1 vom: 15., Seite 65-77
1. Verfasser: Kotropoulos, C (VerfasserIn)
Weitere Verfasser: Magnisalis, X, Pitas, I, Strintzis, M G
Format: Aufsatz
Sprache:English
Veröffentlicht: 1994
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177781769
003 DE-627
005 20250209061710.0
007 tu
008 231223s1994 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177781769 
035 |a (NLM)18291909 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kotropoulos, C  |e verfasserin  |4 aut 
245 1 0 |a Nonlinear ultrasonic image processing based on signal-adaptive filters and self-organizing neural networks 
264 1 |c 1994 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 22.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Two approaches for ultrasonic image processing are examined. First, signal-adaptive maximum likelihood (SAML) filters are proposed for ultrasonic speckle removal. It is shown that in the case of displayed ultrasound (US) image data the maximum likelihood (ML) estimator of the original (noiseless) signal closely resembles the L(2) mean which has been proven earlier to be the ML estimator of the original signal in US B-mode data. Thus, the design of signal-adaptive L(2) mean filters is treated for US B-mode data and displayed US image data as well. Secondly, the segmentation of ultrasonic images using self-organizing neural networks (NN) is investigated. A modification of the learning vector quantizer (L(2 ) LVQ) is proposed in such a way that the weight vectors of the output neurons correspond to the L(2) mean instead of the sample arithmetic mean of the input observations. The convergence in the mean and in the mean square of the proposed L(2) LVQ NN are studied. L(2) LVQ is combined with signal-adaptive filtering in order to allow preservation of image edges and details as well as maximum speckle reduction in homogeneous regions 
650 4 |a Journal Article 
700 1 |a Magnisalis, X  |e verfasserin  |4 aut 
700 1 |a Pitas, I  |e verfasserin  |4 aut 
700 1 |a Strintzis, M G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 3(1994), 1 vom: 15., Seite 65-77  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:3  |g year:1994  |g number:1  |g day:15  |g pages:65-77 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 3  |j 1994  |e 1  |b 15  |h 65-77