Adaptive LMS L-filters for noise suppression in images

Several adaptive least mean squares (LMS) L-filters, both constrained and unconstrained ones, are developed for noise suppression in images and compared in this paper. First, the location-invariant LMS L-filter for a nonconstant signal corrupted by zero-mean additive white noise is derived. It is de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 5(1996), 12 vom: 15., Seite 1596-609
1. Verfasser: Kotropoulos, C (VerfasserIn)
Weitere Verfasser: Pitas, I
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177764422
003 DE-627
005 20231223150935.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0593.xml 
035 |a (DE-627)NLM177764422 
035 |a (NLM)18290078 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kotropoulos, C  |e verfasserin  |4 aut 
245 1 0 |a Adaptive LMS L-filters for noise suppression in images 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 21.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Several adaptive least mean squares (LMS) L-filters, both constrained and unconstrained ones, are developed for noise suppression in images and compared in this paper. First, the location-invariant LMS L-filter for a nonconstant signal corrupted by zero-mean additive white noise is derived. It is demonstrated that the location-invariant LMS L-filter can be described in terms of the generalized linearly constrained adaptive processing structure proposed by Griffiths and Jim (1982). Subsequently, the normalized and the signed error LMS L-filters are studied. A modified LMS L-filter with nonhomogeneous step-sizes is also proposed in order to accelerate the rate of convergence of the adaptive L-filter. Finally, a signal-dependent adaptive filter structure is developed to allow a separate treatment of the pixels that are close to the edges from the pixels that belong to homogeneous image regions 
650 4 |a Journal Article 
700 1 |a Pitas, I  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 5(1996), 12 vom: 15., Seite 1596-609  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:5  |g year:1996  |g number:12  |g day:15  |g pages:1596-609 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1996  |e 12  |b 15  |h 1596-609