Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model

This paper proposes a new texture classification algorithm that is invariant to rotation and gray-scale transformation. First, we convert two-dimensional (2-D) texture images to one-dimensional (1-D) signals by spiral resampling. Then, we use a quadrature mirror filter (QMF) bank to decompose sample...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 5(1996), 10 vom: 15., Seite 1423-34
1. Verfasser: Wu, W R (VerfasserIn)
Weitere Verfasser: Wei, S C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177764244
003 DE-627
005 20231223150935.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0593.xml 
035 |a (DE-627)NLM177764244 
035 |a (NLM)18290060 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, W R  |e verfasserin  |4 aut 
245 1 0 |a Rotation and gray-scale transform-invariant texture classification using spiral resampling, subband decomposition, and hidden Markov model 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 21.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper proposes a new texture classification algorithm that is invariant to rotation and gray-scale transformation. First, we convert two-dimensional (2-D) texture images to one-dimensional (1-D) signals by spiral resampling. Then, we use a quadrature mirror filter (QMF) bank to decompose sampled signals into subbands. In each band, we take high-order autocorrelation functions as features. Features in different bands, which form a vector sequence, are then modeled as a hidden Markov model (BMM). During classification, the unknown texture is matched against all the models and the best match is taken as the classification result. Simulations showed that the highest correct classification rate for 16 kinds of texture was 95.14% 
650 4 |a Journal Article 
700 1 |a Wei, S C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 5(1996), 10 vom: 15., Seite 1423-34  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:5  |g year:1996  |g number:10  |g day:15  |g pages:1423-34 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1996  |e 10  |b 15  |h 1423-34