Solution of inverse problems in image processing by wavelet expansion

We describe a wavelet-based approach to linear inverse problems in image processing. In this approach, both the images and the linear operator to be inverted are represented by wavelet expansions, leading to a multiresolution sparse matrix representation of the inverse problem. The constraints for a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 4(1995), 5 vom: 15., Seite 579-93
1. Verfasser: Wang, G (VerfasserIn)
Weitere Verfasser: Zhang, J, Pan, G W
Format: Aufsatz
Sprache:English
Veröffentlicht: 1995
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM177763728
003 DE-627
005 20250209061415.0
007 tu
008 231223s1995 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0593.xml 
035 |a (DE-627)NLM177763728 
035 |a (NLM)18290008 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, G  |e verfasserin  |4 aut 
245 1 0 |a Solution of inverse problems in image processing by wavelet expansion 
264 1 |c 1995 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 21.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We describe a wavelet-based approach to linear inverse problems in image processing. In this approach, both the images and the linear operator to be inverted are represented by wavelet expansions, leading to a multiresolution sparse matrix representation of the inverse problem. The constraints for a regularized solution are enforced through wavelet expansion coefficients. A unique feature of the wavelet approach is a general and consistent scheme for representing an operator in different resolutions, an important problem in multigrid/multiresolution processing. This and the sparseness of the representation induce a multigrid algorithm. The proposed approach was tested on image restoration problems and produced good results 
650 4 |a Journal Article 
700 1 |a Zhang, J  |e verfasserin  |4 aut 
700 1 |a Pan, G W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 4(1995), 5 vom: 15., Seite 579-93  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:4  |g year:1995  |g number:5  |g day:15  |g pages:579-93 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 4  |j 1995  |e 5  |b 15  |h 579-93