|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM177717963 |
003 |
DE-627 |
005 |
20231223150834.0 |
007 |
tu |
008 |
231223s1996 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0592.xml
|
035 |
|
|
|a (DE-627)NLM177717963
|
035 |
|
|
|a (NLM)18285191
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pitas, I
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Order statistics learning vector quantizer
|
264 |
|
1 |
|c 1996
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 02.10.2012
|
500 |
|
|
|a Date Revised 20.02.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We propose a novel class of learning vector quantizers (LVQs) based on multivariate data ordering principles. A special case of the novel LVQ class is the median LVQ, which uses either the marginal median or the vector median as a multivariate estimator of location. The performance of the proposed marginal median LVQ in color image quantization is demonstrated by experiments
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Kotropoulos, C
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nikolaidis, N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gabbouj, M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 5(1996), 6 vom: 15., Seite 1048-53
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:5
|g year:1996
|g number:6
|g day:15
|g pages:1048-53
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 5
|j 1996
|e 6
|b 15
|h 1048-53
|