A new efficient approach for the removal of impulse noise from highly corrupted images

A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding wind...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 5(1996), 6 vom: 15., Seite 1012-25
Auteur principal: Abreu, E (Auteur)
Autres auteurs: Lightstone, M, Mitra, S K, Arakawa, K
Format: Article
Langue:English
Publié: 1996
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM177717939
003 DE-627
005 20250209060551.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177717939 
035 |a (NLM)18285188 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Abreu, E  |e verfasserin  |4 aut 
245 1 2 |a A new efficient approach for the removal of impulse noise from highly corrupted images 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 20.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A new framework for removing impulse noise from images is presented in which the nature of the filtering operation is conditioned on a state variable defined as the output of a classifier that operates on the differences between the input pixel and the remaining rank-ordered pixels in a sliding window. As part of this framework, several algorithms are examined, each of which is applicable to fixed and random-valued impulse noise models. First, a simple two-state approach is described in which the algorithm switches between the output of an identity filter and a rank-ordered mean (ROM) filter. The technique achieves an excellent tradeoff between noise suppression and detail preservation with little increase in computational complexity over the simple median filter. For a small additional cost in memory, this simple strategy is easily generalized into a multistate approach using weighted combinations of the identity and ROM filter in which the weighting coefficients can be optimized using image training data. Extensive simulations indicate that these methods perform significantly better in terms of noise suppression and detail preservation than a number of existing nonlinear techniques with as much as 40% impulse noise corruption. Moreover, the method can effectively restore images corrupted with Gaussian noise and mixed Gaussian and impulse noise. Finally, the method is shown to be extremely robust with respect to the training data and the percentage of impulse noise 
650 4 |a Journal Article 
700 1 |a Lightstone, M  |e verfasserin  |4 aut 
700 1 |a Mitra, S K  |e verfasserin  |4 aut 
700 1 |a Arakawa, K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 5(1996), 6 vom: 15., Seite 1012-25  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:5  |g year:1996  |g number:6  |g day:15  |g pages:1012-25 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1996  |e 6  |b 15  |h 1012-25