Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood) : applications to tomography

Many estimators in signal processing problems are defined implicitly as the maximum of some objective function. Examples of implicitly defined estimators include maximum likelihood, penalized likelihood, maximum a posteriori, and nonlinear least squares estimation. For such estimators, exact analyti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 5(1996), 3 vom: 15., Seite 493-506
1. Verfasser: Fessler, J A (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM177717394
003 DE-627
005 20250209060548.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM177717394 
035 |a (NLM)18285134 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fessler, J A  |e verfasserin  |4 aut 
245 1 0 |a Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood)  |b applications to tomography 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 16.03.2022 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many estimators in signal processing problems are defined implicitly as the maximum of some objective function. Examples of implicitly defined estimators include maximum likelihood, penalized likelihood, maximum a posteriori, and nonlinear least squares estimation. For such estimators, exact analytical expressions for the mean and variance are usually unavailable. Therefore, investigators usually resort to numerical simulations to examine the properties of the mean and variance of such estimators. This paper describes approximate expressions for the mean and variance of implicitly defined estimators of unconstrained continuous parameters. We derive the approximations using the implicit function theorem, the Taylor expansion, and the chain rule. The expressions are defined solely in terms of the partial derivatives of whatever objective function one uses for estimation. As illustrations, we demonstrate that the approximations work well in two tomographic imaging applications with Poisson statistics. We also describe a "plug-in" approximation that provides a remarkably accurate estimate of variability even from a single noisy Poisson sinogram measurement. The approximations should be useful in a wide range of estimation problems 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 5(1996), 3 vom: 15., Seite 493-506  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:5  |g year:1996  |g number:3  |g day:15  |g pages:493-506 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1996  |e 3  |b 15  |h 493-506