Periodic quasi-orthogonal spline bases and applications to least-squares curve fitting of digital images

Presents a new covariant basis, dubbed the quasi-orthogonal Q-spline basis, for the space of n-degree periodic uniform splines with k knots. This basis is obtained analogously to the B-spline basis by scaling and periodically translating a single spline function of bounded support. The construction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 5(1996), 1 vom: 15., Seite 71-88
1. Verfasser: Flickner, M (VerfasserIn)
Weitere Verfasser: Hafner, J, Rodriguez, E J, Sanz, J C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1996
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM177716967
003 DE-627
005 20231223150832.0
007 tu
008 231223s1996 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0592.xml 
035 |a (DE-627)NLM177716967 
035 |a (NLM)18285091 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Flickner, M  |e verfasserin  |4 aut 
245 1 0 |a Periodic quasi-orthogonal spline bases and applications to least-squares curve fitting of digital images 
264 1 |c 1996 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 20.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Presents a new covariant basis, dubbed the quasi-orthogonal Q-spline basis, for the space of n-degree periodic uniform splines with k knots. This basis is obtained analogously to the B-spline basis by scaling and periodically translating a single spline function of bounded support. The construction hinges on an important theorem involving the asymptotic behavior (in the dimension) of the inverse of banded Toeplitz matrices. The authors show that the Gram matrix for this basis is nearly diagonal, hence, the name "quasi-orthogonal". The new basis is applied to the problem of approximating closed digital curves in 2D images by least-squares fitting. Since the new spline basis is almost orthogonal, the least-squares solution can be approximated by decimating a convolution between a resolution-dependent kernel and the given data. The approximating curve is expressed as a linear combination of the new spline functions and new "control points". Another convolution maps these control points to the classical B-spline control points. A generalization of the result has relevance to the solution of regularized fitting problems 
650 4 |a Journal Article 
700 1 |a Hafner, J  |e verfasserin  |4 aut 
700 1 |a Rodriguez, E J  |e verfasserin  |4 aut 
700 1 |a Sanz, J C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 5(1996), 1 vom: 15., Seite 71-88  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:5  |g year:1996  |g number:1  |g day:15  |g pages:71-88 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 5  |j 1996  |e 1  |b 15  |h 71-88