Modeling resonator frequency fluctuations induced by adsorbing and desorbing surface molecules

Resonator frequency fluctuations due to adsorption and desorption of molecules on plate electrodes are studied using the principle of mass-loading effects of adsorbed molecules. The study is based on a 525 MHz, AT-cut quartz resonator enclosed in a small crystal holder. Equations relating the surfac...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 37(1990), 6 vom: 15., Seite 543-50
Auteur principal: Yong, Y K (Auteur)
Autres auteurs: Vig, J R
Format: Article
Langue:English
Publié: 1990
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article
Description
Résumé:Resonator frequency fluctuations due to adsorption and desorption of molecules on plate electrodes are studied using the principle of mass-loading effects of adsorbed molecules. The study is based on a 525 MHz, AT-cut quartz resonator enclosed in a small crystal holder. Equations relating the surface adsorption rates of the crystal holder to pressure were derived and found to be quadratic polynomial functions of the adsorption rates. Calculations based on these equations show that a contaminant gas with a higher desorption energy creates larger changes in pressure when the temperature is varied. The function describing the frequency fluctuations due to any one contaminant site is a continuous-time Markov chain. Kolmogorov equations and an autocorrelation function for the Markov chain are derived. The autocorrelation and spectral density function of resonator frequency fluctuations are derived. The spectral density of frequency fluctuations at 1 Hz is studied as a function of pressure, temperature, and desorption energy of molecules. The noise levels for a contaminant gas with one type of molecules are found to be lower for lower desorption energies, and higher at lower pressures
Description:Date Completed 02.10.2012
Date Revised 20.02.2008
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955