Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification

Fractional Brownian motion (FBM) is a suitable description model for a large number of natural shapes and phenomena. In applications, it is imperative to estimate the fractal dimension from sampled data, namely, discrete-time FBM (DFBM). To this aim, the increment of DFBM, referred to as discrete-ti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 6(1997), 8 vom: 15., Seite 1176-84
1. Verfasser: Liu, S C (VerfasserIn)
Weitere Verfasser: Chang, S
Format: Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM17769663X
003 DE-627
005 20250209060236.0
007 tu
008 231223s1997 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0592.xml 
035 |a (DE-627)NLM17769663X 
035 |a (NLM)18283005 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, S C  |e verfasserin  |4 aut 
245 1 0 |a Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification 
264 1 |c 1997 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 02.10.2012 
500 |a Date Revised 19.02.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Fractional Brownian motion (FBM) is a suitable description model for a large number of natural shapes and phenomena. In applications, it is imperative to estimate the fractal dimension from sampled data, namely, discrete-time FBM (DFBM). To this aim, the increment of DFBM, referred to as discrete-time fractional Gaussian noise (DFGN), is invoked as an auxiliary tool. The regular part of DFGN is first filtered out via Levinson's algorithm. The power spectral density of the regular process is found to satisfy a power law that its exponent can be well fitted by a quadratic function of fractal dimension. A new method is then proposed to estimate the fractal dimension of DFBM from the given data set. The computational complexity and statistical properties are investigated. Moreover, the proposed algorithm is robust with respect to amplitude scaling and shifting, as well as time shifting on the data. Finally, the effectiveness of this estimator is demonstrated via a classification problem of natural texture images 
650 4 |a Journal Article 
700 1 |a Chang, S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 6(1997), 8 vom: 15., Seite 1176-84  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:6  |g year:1997  |g number:8  |g day:15  |g pages:1176-84 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 6  |j 1997  |e 8  |b 15  |h 1176-84